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Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit
weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical
mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic
equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular
we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region
of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of
detailed balance are applied, these distributions depend on the partition function of the problem, thus estab-
lishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase
the distribution function of the occupation times approaches a � function centered on the value predicted based
on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly
discussed.
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I. INTRODUCTION

There is growing interest in nonergodicity of systems
whose dynamics is governed by power law waiting times, in
such a way that a state of the system is occupied with a
sojourn time whose average is infinite. Such nonergodicity,
called weak ergodicity breaking �1�, was first introduced in
the context of glassy dynamics. It has found several applica-
tions in physics: phenomenological models of glassy dynam-
ics �1�, laser cooling �2�, blinking quantum dots �3,4�, and
models of atomic transport in optical lattices �5�. For ex-
ample, single blinking quantum dots, when interacting with a
continuous wave laser field, turn at random times from a
bright state in which many fluorescent photons are emitted to
a dark state. It is found that the distribution of dark and
bright times follows power law behavior. Somewhat similar
statistical behavior is found also for laser cooling of atoms,
where the atom is found in two states in momentum space, a
cold trapped state and a free state; the sojourn time probabil-
ity density function has a power law behavior ������−�1+��

with ��1. For such systems the time average of physical
observables, for example the time average of fluorescence
intensity of single quantum dots, is nonidentical to the en-
semble average even in the long time limit. From a stochastic
point of view such ergodicity breaking is expected, since the
condition to obtain ergodicity is that the measurement time t
be much longer than the microscopical time scale of the
problem. However, the microscopic time scale in our ex-
amples is infinite, namely, the mean trapping times or the
mean dark and bright times diverge. When these characteris-
tic time scales are infinite, namely, ��1, we can never make
time averages for long enough times to obtain ergodicity.

It is important to note that the concept of a waiting �i.e.,
trapping� time probability density function �PDF� ����, with

diverging first moment, is widespread and found in many
fields of physics �2,6–10�. It was introduced into the theory
of transport of charge carriers in disordered materials �11� in
the context of the continuous time random walk �CTRW�.
The CTRW describes a random walk on a lattice with a
waiting time PDF of times between jump events ����. The
model exhibits anomalous diffusion �11� and aging behaviors
�12–15�, when ��1, which are related to ergodicity break-
ing. The CTRW found many applications in the context of
chaotic dynamics �14,16,17�, tracer diffusion in complex
flows �18,19�, financial time series �20�, and diffusion of
beads in a polymer network �21�, to name a few �6,7�. Other
models with dynamics similar to that of the CTRW are the
comb model �8� and the annealed version of the trap model
�12�. In turn the trap model is related to the random energy
model �22�. All these systems and models can be at least
suspected of exhibiting nonergodic behavior, and hence con-
structing a general theory of nonergodicity for such systems
is in our opinion a worthy goal.

Systems and models exhibiting anomalous diffusion, and
CTRW behaviors can be divided into two categories: systems
where the random walk is close to thermal equilibrium,
where the temperature of the system is well defined at least
from an experimental point of view, and nonthermal systems.
The ergodicity breaking of thermal CTRW models is in con-
flict with the Boltzmann-Gibbs ergodic assumption. As far as
we know, there is no theory characterizing the nonergodic
properties of the CTRW for either the thermal or nonthermal
type of random walk.

Hence one goal of this paper is to obtain the nonergodic
properties of the well known CTRW model on a lattice. Sec-
ond, we investigate ergodicity breaking and its relation to
Boltzmann-Gibbs statistics. Using rather general arguments
and using a CTRW model we investigate the distribution of
the total occupation times of a lattice point or a state of the
system �in Sec. VI we consider the more general case of
occupation times in connected and disconnected domains�.
We show that in the limit of long measurement time and in
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the ergodic phase the occupation times are obtained using the
Boltzmann-Gibbs canonical ensemble, provided that detailed
balance conditions are satisfied. In the nonergodic phase we
obtain nontrivial distributions of the occupation times, which
are related to the arcsine law. These limiting distributions are
unique in the sense that they do not depend on all the dy-
namical details of the underlying model. Further, the distri-
butions we obtain depend on Boltzmann’s probability,
namely, on the temperature T and the partition function Z.
Thus a connection is established between nonergodic dynam-
ics and the basic tool of statistical mechanics.

The study of occupation times in the context of classical
Brownian motion was considered by Lévy. Consider a
Brownian path generated with ẋ�t�=	�t�, where 	�t� is
Gaussian white noise, in the time interval �0, t�, and with free
boundary conditions. The total time t+ the particles spend on
the half space x
0 is called the occupation time of the posi-
tive half space. The fraction of occupation time p+= t+ / t is
distributed according to the celebrated arcsine law �23�

lim
t→�

f�p+� =
1

��p+�1 − p+�
, �1�

where 0
 p+
1. In contrast to naive expectation, it is un-
likely to find p+=1/2, which would mean that the particle
remains half of the time in x
0. Instead f�p+� diverges at
p+=0 and p−=1, indicating that the Brownian particle tends
to stay either in x
0 or in x�0 for long times of the order
of the measurement time t. Hence f�p+� has a U shape. Such
behavior is related to the survival probability of the Brown-
ian particle. The probability of a Brownian particle starting at
x
0 remaining in x
0 without crossing x=0 decays like a
power law t−1/2. The average time the particle remains in
x
0, before the first crossing of x=0, is infinite. Similar
U-shape distributions, in far less trivial examples, were in-
vestigated more recently in the context of random walks in
random environments �24�, renewal processes �25�, stochas-
tic processes �26�, zero-temperature Glauber spin dynamics
�27�, diffusion equations �28�, two-dimensional Ising model
�30�, and growing interfaces �29�.

The study of nonergodicity within the CTRW framework
is timely due to recent single-molecule �31� types of experi-
ments. In many experiments anomalous diffusion and power
law behavior was observed using single-particle tracking
techniques �3,21,32–34� �e.g., single quantum dots �4��. An
interesting example is the diffusive motion of magnetic
beads in an actin network �21�. The latter exhibit a CTRW
type of behavior while the system has a well defined tem-
perature T, namely, the random walk seems close to thermal
equilibrium and the particle is coupled to a thermal heat bath.
In particular, long tailed t−�1+�� waiting time distributions
were recorded and anomalous subdiffusion �r2�� t� with
��1 was observed. While clearly ensemble average classi-
fications of the anomalous process, e.g., the mean square
displacement, are important, it is the time averages of single-
particle trajectories that distinguish the single-particle mea-
surement from standard ensemble average type of measure-
ment. Thus stochastic theories of nonergodicity can help with
the fundamental question in single-molecule experiments:

Are time averages recorded in such experiment identical to
the corresponding ensemble averages? and if not how do we
classify the nonergodic phase?

This paper is organized as follows. In Sec. II we discuss a
possible generalization of Boltzmann-Gibbs statistics for
nonergodic dynamics. In Sec. III we introduce the CTRW
model, which yields the nonergodic dynamics. Section IV is
the main technical part of the paper, in which we obtain first
passage time properties of the CTRW. The relation of these
properties to the nonergodic behavior is shown. In Sec. V we
give the main results and compare between the nonergodic
framework and standard Boltzmann-Gibbs statistics. In Sec.
VI occupation times on a finite domain �coarse graining� are
considered, as well as detailed numerical simulations. A brief
summary of some of our results was published recently �35�.

II. FROM BOLTZMANN STATISTICS
TO NONERGODICITY

In this section we discuss a possible nonergodic generali-
zation of Boltzmann-Gibbs theory, without attempting to
prove its validity.

The basic tool in statistical mechanics is Boltzmann’s
probability Px

B of finding a system in a state with energy Ex,

Px
B =

exp�− Ex/T�
Z

, �2�

where T is the temperature and Z=	x exp�−Ex /T�. In Eq. �2�
we use the canonical ensemble and assume a classical sys-
tem, with discrete energy states 
0
E1
E2¯ �. To obtain
the average energy of the system, we use

�E� = 	
x

ExPx
B, �3�

and similarly for other physical observables like entropy, free
energy, etc. Equation �3� is an ensemble average. When mea-
surement of a single system is made, a time average of a
physical observable is recorded. Consider a system randomly
changing between its energy states 
Ex�. At a given time the
system occupies one energy state. Let tx be the total time
spent by the system in energy state Ex, within the total ob-
servation period �0, t�. The system may visit state Ex many
times during the evolution; hence tx is composed in principle
from many sojourn times. We define the occupation fraction

p̄x =
tx

t
, �4�

and the time average energy is

Ē = 	
x

Exp̄x. �5�

According to statistical mechanics, once the ergodic hypoth-
esis is satisfied, and within the canonical formalism p̄x= Px

B

and then Ē= �E�, and similarly for other physical observ-
ables. More generally, the occupation fraction p̄x is a random
variable, whose statistical properties depend on the underly-
ing dynamics. If Boltzmann’s conditions hold the probability
density function of p̄x is
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f�p̄x� = ��p̄x − Px
B� �6�

in the thermodynamic limit. The last equation is a restate-
ment of the ergodic hypothesis.

In this paper we discuss a possible generalization of the
ergodic hypothesis. Our proposal is that the PDF of p̄x, for
certain models described by CTRW type of dynamics, is de-
scribed by a �� function

f�p̄x� = ���Rx, p̄x�

=
sin ��

�

Rxp̄x
�−1�1 − p̄x��−1

Rx
2�1 − p̄x�2� + p̄x

2� + 2Rx�1 − p̄x��p̄x
� cos ��

,

�7�

where 0��
1. This PDF was obtained by Lamperti �36� in
the context of the mathematical theory of occupation times
�see Appendix A for details�. For Rx=1, �=1/2 we have the
arcsine law. Here we claim that when local detailed balance
condition is satisfied

Rx =
Px

B

1 − Px
B . �8�

When �=1 we get the usual ergodic behavior defined in Eq.
�6�. Equation �7� is valid only in the limit of long measure-
ment time. In the nonergodic phase ��1, Eqs. �7� and �8�
establish a relation between the ergodicity breaking and
Boltzmann-Gibbs statistics. The exponent � is the anoma-
lous diffusion exponent in the relation �x2�� t�.

For CTRWs not satisfying detailed balance condition a
more general rule holds. We will show that the PDF of the
fraction of time spent on lattice point x, p̄x, is still given by
Eq. �7�. However, now

Rx =
Px

eq

1 − Px
eq , �9�

where Px
eq is the probability that a particle occupies lattice

point x in equilibrium �an equilibrium is obtained for a sys-
tem of finite size�. Here Px

eq and Px
B are probabilities in the

ensemble sense, namely, if we consider an ensemble of N
noninteracting particles �or systems� satisfying some dy-
namical rule, Px

eq and Px
B yield in principle the probability

that a member of the ensemble occupies state x in equilib-
rium, which is not identical to p̄x for nonergodic systems.

Let us give some general arguments for the validity of
Eqs. �7� and �8�. Consider a particular energy state of the
system and call it Ex. At a given time the system is either in
energy state Ex or in any of the other energy states. When the
system does not occupy state x we will say that the system is
in state nx �not x�. Assume that sojourn times in states x and
nx are

�x��� �
Ax

���− ����1+� , �nx��� �
Anx

���− ����1+� �10�

when � is large. Also assume that sojourn times in states x
and nx are not correlated. Thus we imagine the system oc-
cupying state x, then occupying state nx, then again state x,
etc. The amplitudes Ax and Anx will generally depend on the

particular dynamics of the system. We show in Appendix A
that Eq. �7� holds with Rx=Ax /Anx. Generally it seems a
hopeless mission to calculate the ratio Ax /Anx from any mi-
croscopical model. However, a simple physical argument
yields the ratio Rx. Assume that for an ensemble of systems
Boltzmann-Gibbs statistical mechanics holds. Such an as-
sumption means that on average we must have

�p̄x� = Px
B, �11�

where Px
B is Boltzmann’s probability of finding a member of

an ensemble of systems in state x. On the other hand, Eq. �7�
yields

�p̄x� = 

0

1

p̄x f�p̄x�dp̄x =
Rx

1 + Rx
. �12�

Using Eqs. �11� and �12� we obtain Eq. �8�.
Our work is related to the concept of weak ergodicity

breaking, suggested by Bouchaud �1�. In standard statistical
mechanics, one divides the phase space of the system into
equally sized cells, and the system is supposed to visit these
cells with equal probability under certain constraints �e.g.,
the energy of the system is constant for the microcanonical
ensemble�. Strong ergodicity breaking means that in order to
leave one phase space cell to go to another, one has to cross
a barrier �e.g., an energy barrier� which becomes infinite in
the thermodynamic limit. In this case the time it takes for the
system to move from one state to the other is infinite. It is
worth thinking of such a process in terms of a distribution of
escape times, ����=R exp�−R��, where Rt is small even in
the thermodynamic limit of long measurement time, t. In that
case the particle or system simply remains in a certain do-
main of phase space for the whole period of observation, and
the system does not explore its entire phase space available
for ergodic systems. A very different scenario was suggested
by Bouchaud, in the context of glassy dynamics and the trap
model. If the distribution of sticking times follows power
law behavior, the average escape time diverges,

��� � 

0

�

��−1−�d� → � , �13�

when ��1. Note that also for the strong nonergodicity case
we may have an infinite waiting time ���=1/R when R→0.
However, for power law waiting times the system or particle
may still explore its phase space. Or, in other words, expo-
nential waiting times and power law waiting times yield very
different types of dynamics, even if for both the average
waiting time is infinite. Thus, roughly speaking, for weak
nonergodicity and for ensemble of particles we may still get
Boltzmann-Gibbs statistics, since from any initial condition
the phase space is totally covered. However, the system re-
mains weakly nonergodic, since during its evolution, the sys-
tem will randomly pick one state, which it will occupy for a
very long period �but it still visits all the other states� and
then time averages are not equal to ensemble averages. The
goal of this paper is to show that the strong assumptions we
used are correct within a specific model, the well known
CTRW model.
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III. CTRW IN A FORCE FIELD

We consider a one-dimensional CTRW on a lattice. The
lattice points are labeled with index x and x=−L ,−L
+1, . . . ,0 , . . . ,L; hence the system size is 2L+1. On each
lattice point we define a probability 0�QR�x��1 for jump-
ing right, and a probability for jumping left QL�x�=1
−QR�x�. Let ���� be the PDF of waiting times at the sites;
this PDF does not depend on the position of the particle. If
the particle starts at site x=0, it will wait there for a period �1
determined from ����; it will then jump with probability
QL�0� to the left, and with probability QR�0� to the right.
After the jump, say to lattice point 1, the particle will pause
for a period �2, whose statistical properties are determined by
����. It will then jump either back to point 0 or to x=2,
according to the probability law QR�1�. Then the process is
renewed. We consider reflecting boundary conditions,
namely, QL�L�=QR�−L�=1.

The case of a long tailed waiting time PDF, where ����
��−�1+�� when �→� and 0���1, yields a nonergodic be-
havior. In this case the average waiting time is infinite. The
Laplace transform of ���� is

�̂�u� = 

0

�

e−u�����d� . �14�

As usual, according to the Tauberian theorem �23�, the small
u behavior is

�̂�u� � 1 − Au� + ¯ �15�

and A
0 is a constant.
Choose a specific lattice point x and then define �x�t�=1 if

the particle is on x; otherwise it is zero. We define the occu-
pation fraction as the time average of �x�t�,

p̄x =



0

t

�x�t��dt�

t
, �16�

namely, p̄x= tx / t, where tx is the total time spent on lattice
point x �i.e., the occupation time of site x�. We will later
calculate the PDF of p̄x.

Two special cases are the unbiased CTRW, where
QL�x�=QR�x�=1/2, and the uniformly biased CTRW with
QL�x�=q. In these cases no transition probabilities depend on
the position of the random walker x, except on the bound-
aries of course. In the language of random walks these cases
describe a symmetric diffusion process and diffusion with a
drift. Note that in our model QL�x� are not random variables;
rather they are included in the model to mimic a determinis-
tic potential field acting on the system. For detailed discus-
sion of CTRW models see �6,7�.

The case of diffusion with a constant drift, i.e., q�1/2, is
used many times to model diffusion under the influence of a
constant external driving force F. If the physical process is
close to thermal equilibrium the condition of detailed bal-
ance is imposed on the dynamics, in order that for an en-
semble of particles Boltzmann equilibrium is reached �see
further discussion after Eq. �19��. The potential energy at

each point x due to the interaction with the external driving
force is E�x�=−Fax, where a is the lattice spacing. The con-
dition of detailed balance then reads

QL�x�
QR�x�

= exp�−
Fa

T
� , �17�

note that the right hand side of Eq. �17� is independent of the
lattice coordinate. Since QL�x�=q is independent of x we
have

q =
1

1 + exp�Fa/T�
. �18�

More generally we define an energy profile for the system

E−L ,E−L+1 , . . . ,Ei , . . . �. The general detailed balance condi-
tion is then

QL�x�
1 − QL�x − 1�

= exp�−
Ex−1 − Ex

T
� . �19�

Certain restrictions on the detailed balance condition for
nonlinear forces are discussed in Sec. VI. The choice of the
detailed balance condition means that for an ensemble of
particles standard Boltzmann-Gibbs statistics holds. Thus,
for example, if we observe many independent particles, and
look at their density profile in equilibrium, we will see a
profile that is determined by Boltzmann equilibrium. On the
other hand if we consider a trajectory of a single particle and
from it find p̄x we are not likely to find the value of p̄x close
to Boltzmann’s probability, when ��1. Thus ergodicity
breaking is found on the level of a single particle. Note that
there is an interesting transition between one-particle infor-
mation and many-particle behavior; however, this is not the
subject of our work �28�.

IV. FIRST PASSAGE TIMES

The problem of ergodicity breaking is related in this sec-
tion to the problem of first passage times.

The process �x�t� is a two-state process, with state x de-
noting a particle on lattice point x and state nx indicating that
the particle is not on x. Obviously the waiting times in state
x are given by �x���=����. To obtain the PDF of waiting
times in state nx, �nx���, we must calculate the statistical
properties of first passage times. After the particle leaves
point x it is located on either x+1 or x−1 with probabilities
QR�x� and QL�x�, respectively. Let tL denote the time it will
take the particle to return to x starting at point x−1, i.e., the
first passage time from x−1 to x. Let tR be the first passage
time to reach x starting from x+1. Let fR�tR� �fL�tL�� be the
PDF of the first passage time tR �tL�, respectively. Then the
PDF of times in state nx is given by

�nx��� = QR�x�fR��� + QL�x�fL��� . �20�

In principle once the long time behavior of the PDFs of first
passage times is obtained, we have �nx��� and �x���, and
then we may use the formalism developed in Appendix A to
obtain the PDF of the occupation fraction p̄x. We now inves-
tigate the first passage time PDFs for biased and unbiased

G. BEL AND E. BARKAI PHYSICAL REVIEW E 73, 016125 �2006�

016125-4



CTRWs, using an analytical approach. The reader not inter-
ested in mathematical details may skip to Sec. V.

A. Relation between discrete time and continuous time RWs

For convenience we define a new lattice. We consider the

CTRW in one dimension, on lattice points x=0,1 ,2 , . . . , L̃.
Point x=0 is a “sticky” absorbing boundary, namely, once
the particle reaches point x=0 it remains there forever. Point

L̃ is a reflecting boundary, and initially at time t=0 the par-
ticle is on x=1. Let SCT�t� be the survival probability of the
CTRW particle, where the subscript “CT” indicates CTRW.
The object of interest is the PDF of first passage times fCT�t�,
which is minus the time derivative of SCT�t�. The solution is
possible due to an important relation �37� between the
CTRW first passage time problem and that of discrete time
random walks. In Ref. �37� the first passage time problem
with CTRW dynamics with exponential waiting times was
considered.

The point 0 of the new lattice is point x in the original

problem and L̃=L−x and similarly for the other L̃−1 points
of the new lattice. Hence the calculation of the first passage

PDF on the new lattice x=0,1 ,2 , . . . , L̃ yields fR�tR�. With
straightforward change of notation we may consider also
fL�tL�.

Let SCT�t� be the survival probability of the CTRW par-

ticle in the interval x=1,… ,x= L̃. Let Sdis�N� be the prob-
ability of survival after N jump events, for a particle starting
at x=1 �the subscript “dis” stands for discrete�. Then

SCT�t� = 	
N=0

�

Sdis�N�w�N,t� �21�

where w�N , t� is the probability for N steps, within time t, in
a CTRW process. In Laplace, t→u space it is easy to show
using the convolution theorem of the Laplace transform that

ŵ�N,u� =
1 − �̂�u�

u
�̂ N�u� �22�

where �̂�u� is the Laplace transform of ����. In this work the
discrete Laplace transform of an arbitrary function G�N�,
also called the z transform, is defined as

G̃�z� = 	
N=0

�

zNG�N� . �23�

Using Eqs. �21� and �22� we find

ŜCT�u� =
1 − �̂�u�

u
S̃dis��̂�u�� . �24�

This equation establishes the relation between the discrete
and continuous time problems.

Let Px�N� be the probability of occupying site x after N
jumps and Px�0�=�x1. The master equation describing the
discrete time problem is given by

P0�N + 1� = QL�1�P1�N� + P0�N�

�since the origin 0 is absorbing�,

P1�N + 1� = QL�2�P2�N� ,

P2�N + 1� = QR�1�P1�N� + QL�3�P3�N� ,

Px�N + 1� = QR�x − 1�Px−1�N� + QL�x + 1�Px+1�N� ,

PL̃−1�N + 1� = PL̃�N� + QR�L̃ − 2�PL̃−2�N� ,

PL̃�N + 1� = QR�L̃ − 1�PL̃−1�N� . �25�

The probability to be absorbed for the first time at x=0 after
N+1 jumps �the discrete time� is

Fdis�N + 1� = QL�1�P1�N� . �26�

The discrete survival probability is given by

Sdis�N� = 1 − P0�N� . �27�

Using Eq. �25�

Sdis�N� = 1 − �QL�1�P1�N − 1� + P0�N − 1�� , �28�

and from Eq. �26�

Sdis�N� = 1 − �Fdis�N� + P0�N − 1�� . �29�

Using Eq. �27� we have

Sdis�N� − Sdis�N − 1� = − Fdis�N� , �30�

which simply means that the change in the survival probabil-
ity at step N is equal to minus the probability of first passage.
The z transform �defined in Eq. �23�� of Eq. �30� yields

S̃dis�z� =
1 − F̃dis�z�

1 − z
. �31�

Hence from Eq. �24�

ŜCT�u� =
1

u

1 − F̃dis��̂�u��� . �32�

Let fCT�t� be the first passage time PDF of the CTRW prob-
lem. As usual

fCT�t� = −
d

dt
SCT�t� , �33�

which is the continuous pair of Eq. �30�. If the random
walker always returns to the origin, then �0

�fCT�t�dt=1, and
Eq. �33� yields

f̂CT�u� = − uŜCT�u� + 1 �34�

and using Eq. �32�

f̂CT�u� = F̃dis��̂�u�� . �35�

This is the most important equation of this subsection. At
least in some cases the solution of the discrete time first
passage time problem in z space is possible, and then we can
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transform the solution to Laplace u space of the seemingly
more difficult case of continuous time. Note that our assump-
tion that the random walk is recurrent is valid only when the
system size is finite, and QL�x�
0 for any x except on the
boundary.

B. First passage time for unbiased and uniformly
biased CTRW

We start with finding the first passage time distribution for
the unbiased CTRW in Laplace space. For the unbiased ran-

dom walk we have QL�x�=QR�x�=1/2, for x�0, x� L̃. And
as mentioned x=0 is the absorbing boundary condition,

while L̃ is a reflecting wall. As shown we may consider the
first passage time for the discrete time random walk Eq. �25�
and then use the transformation Eq. �35� to obtain the corre-
sponding CTRW first passage time. In Appendix B we solved
the discrete time model to obtain

F̃dis�z� =
z/2

1 −
z2

4

B+�+
L̃−3 + B−�−

L̃−3

B+�+
L̃−2 + �−

L̃−2

, �36�

where

�± =
1 ± �1 − z2

2
, �37�

B− =
1 − z2/2 − �+

�− − �+
, �38�

and B+=1−B−. Using the Laplace transform of the waiting
time PDF Eq. �15� and Eqs. �35� and �36� we obtain the
small u behavior of the first passage time PDF,

f̂CT�u� � 1 − �2L̃ − 1�Au� + ¯ . �39�

Equation �39� yields the Laplace transform of the first pas-
sage times of the unbiased CTRW with reflecting boundary

condition on L̃, absorbing on the origin, and initial location
of the particle on x=1.

We now find the first passage time distribution for the
biased CTRW in Laplace space. Now the probability to jump
left is QL�x�=q and hence the probability to jump to the right

is QR�x�=1−q, for x�0, x� L̃. The two boundary conditions
are the same as in the unbiased case. Like the unbiased case
we treat the problem of the discrete time random walk �for
details see Appendix B� and then use the transformation Eq.
�35� to obtain the corresponding CTRW first passage time
distribution.

In this case

F̃�z� =
qz

1 − q�1 − q�z2B+�+
L̃−3 + B−�−

L̃−3

B+�+
L̃−2 + B−�−

L̃−2

, �40�

where

�±�z� =
1 ± �1 − 4qz2�1 − q�

2
, �41�

B++B−=1, and

B+�z� =
1 − �− − z2�1 − q�

�+ − �−
. �42�

We use the relation Eq. �35� and insert in Eq. �40� the small
u behavior of the Laplace transform of the waiting time PDF
Eq. �15�. In the limit u→0 we find the Laplace transform of
the PDF of the first passage time of the CTRW particle

f̂CT�u� � 1 −
Au�

2q − 1
�1 − 2�1 − q��1 − q

q
�L̃−1� + ¯ .

�43�

It can be easily seen that for q=1 or L=1, f̂CT�u��1−Au� as

expected since then f̂CT�u�= �̂�u�. The second term on the
right hand side of Eq. �43� will diverge when q�1/2 and
L→�, as expected for an infinite system, and for a random
walker moving against the average drift. We see from Eq.
�43� that the PDF of first passage times fCT�t�� t−�1+�� in the
limit of long times, when ��1. In the limit q→1/2 the
solution for the biased case Eq. �43� reduces to the unbiased
solution Eq. �39�.

V. MAIN RESULTS

A. Nonthermal random walks

First consider the unbiased one-dimensional CTRW on a
lattice x=−L , . . . ,L. The PDF of the fraction of occupation
time p̄x= tx / t on a lattice point x, excluding the boundary
points, is obtained using Eqs. �20�, �39�, �A15�, and �A18�.
The general idea of the proof is to note that �̂x�u�= �̂�u�,

�̂nx�u� � 1 − A�2L − 1�u�, �44�

for u→0 and hence using Appendix A we find

lim
t→�

f�p̄x� = ��„�2L − 1�−1, p̄x… , �45�

where the �� function was defined in Eq. �7�. Equation �45�
does not depend on the position x of the observation point,
reflecting the symmetry of the problem. From Eq. �45� we
see that the amplitude ratio satisfies Rx=1/ �2L−1��1 when
L
1. This inequality means that we are less likely to find
the particle on the particular lattice point x under observation
�state x�, if compared with the probability of finding the par-
ticle on any of the other lattice points �state nx�.

For the biased random walk, when the probability of
jumping left is q, we consider the PDF of fraction of time p̄x
on a lattice point x. Now clearly different locations have
different distributions of the fraction of occupation time, re-
flecting the fact that the system is biased. The Laplace trans-
form of the sojourn times on x is simply

�̂x�u� = �̂�u� � 1 − Au� �46�

and using Eq. �20� the sojourn times in all other states �nx� is
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�̂nx�u� = �1 − q� f̂R�L − x,u� + qfL�x + L,u� . �47�

Here f̂R�L−x ,u� is the Laplace transform of the first passage
time PDF, for a system of size L−x+1, obtained in Eq. �43�;
similarly for f̂ L�L−x ,u�, but now replace q with 1−q in Eq.

�43�. Using Eq. �47� we find the small u behavior of �̂nx�u�,
and then using Eq. �A15� we find

�̂nx�u� � 1 −
A

Rx
u� + ¯ , �48�

Rx = � 2

2q − 1
�q2� q

1 − q
�L+x−1

− �1 − q�2�1 − q

q
�L−x−1� − 1�−1

. �49�

Equations �48� and �49� and the results obtained in Appendix
A indicate that the PDF of fraction of occupation time is

f�p̄x� = ���Rx, p̄x� �50�

with Rx given in Eq. �49�.
As expected the PDF of the fraction of occupation time

for the biased CTRW depends on the location of the site
under consideration. As usual if q�1/2 the particle prefers
to stick to the right wall. In our case this behavior implies
that if q�1/2 and x�−L �L is large� then Rx→0, which
means that the lattice point x is never occupied, as expected.

B. Equilibrium–ergodicity breaking relationship

Equations �45�, �50�, and �49� describe the nonergodic
properties of the CTRW for biased and unbiased cases. We
will now consider the relation of the problem of nonergod-
icity with the equilibrium of the process. Consider an en-
semble of independent random walkers performing the
CTRW process in the finite domain. After a long period of
time an equilibrium will be reached, for which the density of
particles is found in a steady state profile. Such an equilib-
rium is obtained after each individual member of the en-
semble made many jump events �one can easily prove that
such an equilibrium is reached�. We denote the probability of
finding such a random walker on point x with Px

eq. It is
straightforward to obtain Px

eq, though some care must be used
when we take into consideration the boundary conditions of
the problem. In equilibrium

Px
eq =

�1 − q

q
�x

Z
�51�

and on the boundaries

PL
eq =

�1 − q��1 − q

q
�L−1

Z
,

P−L
eq =

q�1 − q

q
�−L+1

Z
. �52�

Z is then obtained from the normalization condition
	x=−L

L Px
eq=1. Here Z is not necessarily related to Boltzmann-

Gibbs statistics.
Using the equilibrium properties of the system, after a

short calculation of the normalization constant and some al-
gebra, we find that Eqs. �45�, �50�, and �49� may be written
in a more elegant form as

f�p̄x� = ��� Px
eq

1 − Px
eq , p̄x� . �53�

Note that Px
eq yields the equilibrium properties of many non-

interacting random walkers, or the density profile of a large
number of particles. Hence the single-particle nonergodicity
is related to statistical properties of the equilibrium of
many particles. The fact that we find such a relation should
be anticipated, since if we average p̄x, namely, consider
�p̄x�=�0

�p̄x f�p̄x�dp̄x, we must obtain Px
eq; hence f�p̄x� must be

clearly related to Px
eq. And the requirement �p̄x�= Px

eq implies
that Rx= Px

eq/ �1− Px
eq� as we indeed found �and similar to our

discussion in Sec. II�. For the unbiased case, q=1/2 we have
Px

eq=1/2L, which leads to Eq. �45�. Note that the equilibrium
population on the boundaries x= ±L is half the value of that
found on x� ±L, and hence Z=2L even though we have
2L+1 lattice points.

C. Thermal unbiased and uniformly biased random walks

If the CTRW particle is interacting with a thermal heat
bath, we can relate the nonergodicity to Boltzmann-Gibbs
statistics. The equilibrium probability of occupying a given
cell in the ensemble sense is given by the Boltzmann prob-
ability if the system is in thermal equilibrium. Hence, rewrit-
ing Eq. �53�,

f�p̄x� = ��� Px
B

1 − Px
B , p̄x� . �54�

The factor Px
B / �1− Px

B� means that with probability Px
B the

particle is in state x, and with probability 1− Px
B the particle

is in state nx, i.e., the rest of the system �here we mean
probability in the ensemble sense�. For the free particle we
recall that the Boltzmann probability of occupying a lattice
point is simply

Px
B =

1

Z
�55�

and as mentioned Z=2L is the normalization condition, or
the partition function of the problem.

For a biased CTRW when detailed balance condition Eq.
�18� holds, the equilibrium probability is
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Px
B =

exp�− Fax/T�
Z

, �56�

where x is the lattice site under observation, F is the constant
force, and a is the lattice spacing. Here the partition function
is

Z =

2�q2�1 − q

q
�−L+1

− �1 − q��1 − q

q
�L−1�

2q − 1
�57�

which is easily verified once proper reflecting boundary con-
ditions are applied, and using Eq. �18�.

VI. COARSE GRAINING AND NUMERICAL SIMULATION

So far we considered the occupation time on one lattice
cell. We now consider the more general case where we ob-
serve occupation times on a finite number of cells. Such
coarse graining is important for systems where many cells
exist, since then the statistics of the occupation time of one
cell is poor, unless the measurement time is extremely long.

We also wish to investigate the generality of our results
for a nonlinear force field. In Ref. �35� we considered the
harmonic potential as an example while here we consider a
double-well potential �see details below�.

Consider a CTRW in a potential field V�x�. The system is
divided into two regions; we observe the occupation times in
a connected interval X given by xa�x�xb. The remaining
part of the space is denoted nX �not X�. We assume a
bounded motion in the potential field and that equilibrium
state is obtained for the ensemble. The arguments in Sec. II
may be used to generalize our results. Since waiting
time PDFs of a CTRW follow a power law behavior, we
expect �X�AXt−�1+�� /��−�� and �nX�AnXt−�1+�� /��−��.
This is a generalization of Eqs. �7� and �8�, where we
considered a single state. Following the results of Appendix
A and the arguments given in Sec. II the PDF of the fraction
of occupation time in X is given by ���RX , p̄X�, where
RX= pX

eq/ �1− pX
eq�. If the system is in thermal equilibrium

pX
eq = 	

x�X

pB�x� .

A. Numerical demonstration

To demonstrate this behavior we performed a numerical
simulation of the CTRW process in a potential field of
the form V�x�=x4−x2. This potential has two minima at
x= ±1/�2, and the barrier between them is of height 0.25.
We �i� used the condition of detailed balance Eq. �19�,
and �ii� at the symmetry point of the potential x=0, set
QL�0�=QR�0�=1/2. These two conditions yield QL�x�. Note
that the detailed balance condition as presented in Eq. �19� is
valid only in the continuum limit. For example, using the
conditions mentioned above and discretization of the lattice
in units equal to 1 yields values which are greater than 1 for
QL�x�. In order to use the detailed balance condition the dis-
cretization should be made with small values of �x such that

in all the accessible region of space �where the Boltzmann
probability is finite� 0�QL�x��1. In the simulation pre-
sented here we used �x=0.05 and the temperature was of the
order of the barrier between the minima in order for the
CTRW particle to visit all the accessible region within rea-
sonable time. The random waiting times were generated ac-
cording to the normalized power law waiting time PDF
����=��−�1+��, for �
1.

We first checked that the Boltzmann equilibrium is
reached for an ensemble of particles. In these simulations we
build histograms of the position of N=106 particles, after
each particle evolves for a time t=108 �several values of �
were used�. In Fig. 1 we find good agreement between our
simulations and Boltzmann statistics when many particles
are considered. The figure illustrates that an observer of a
large number of particles cannot detect ergodicity breaking,
and the single-particle limit is essential for our discussion.
We then consider one trajectory at a time. We obtain from the
simulations the total time spent by the particle on lattice
region xa�x�xb. This time is tX and the fraction of occupa-
tion time p̄X= tX / t. In the ergodic phase and long time limit
p̄X will approach the value predicted by Boltzmann statistics.
While in the nonergodic phase we test if our prediction Eqs.
�7� and �8� hold.

In Figs. 2 and 3 we consider two values of �,
�=0.5,0.7, and fix the temperature T. All figures show an
excellent agreement between our theoretical predictions Eqs.
�7� and �8� and numerical simulations. It is more important,
however, to understand the meaning of the figures.

For ��1 we expect that the particle will get stuck on one
lattice point during a very long period, which is of the order

FIG. 1. �Color online� Boltzmann’s equilibrium for an ensemble
of CTRW particles in a double-well potential field, and fixed tem-
perature. In simulations �crosses and circles� the CTRW with �
=0.5 and 0.7 is considered. The figure illustrates that for an en-
semble of particles, standard equilibrium is obtained; ergodicity
breaking is found only when long time averages of single particle
trajectories are analyzed. The scaled potential �dashed curve� is the
double-well potential field, and the solid curve is the Boltzmann
equilibrium distribution. To construct the histogram we measured
the position of N=106 particles, after each is evolved for a time t
=108. The temperature is T=0.3. Note that all quantities are
dimensionless.
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of the measurement time t. This trapping point can be either
within the region of observation or outside this region. In
these cases we expect to find p̄X�1 or p̄X�0, respectively.
Hence the PDF of p̄X has a U shape. This case exhibits large

deviations from ergodic behavior, in the sense that we have a
very small probability for finding the occupation fraction
close to the value predicted based on Boltzmann’s ergodic
theory. As shown in Fig. 2 such U-shape behavior is found
for the case �=0.5. We also plotted the prediction made
using the ergodic assumption �the arrows in the figure� to
demonstrate the fact that a measurement is not likely to yield
the average, which is located on PX

B.
When we increase � we anticipate a more ergodic behav-

ior, in particular in the limit �→1. An ergodic behavior
means that the PDF of the occupation fraction p̄X is centered
on the Boltzmann’s probability. In Fig. 3 where �=0.7 we
start seeing a peak in the PDF of p̄X centered in the vicinity
of the ensemble average value. Note, however, that the PDF
f�p̄X� still attains its maxima at p̄X=0 and p̄X=1. Hence we
find a weaker nonergodic behavior if compared with the case
�=0.5.

In all previous simulations we considered only connected
regions of space, but our theory is not limited to that case. In
order to illustrate that the occupation time of unconnected
regions is also given by Eqs. �7� and �8�, a simulation in
which the occupation time of the regions x
0.6 and
x�−0.6 was performed. The CTRW considered is the same
as the one considered in the previous simulations, i.e., a
CTRW in a double-well potential. The temperature is
T=0.3, and �=0.75. In Fig. 4 it is shown that there is a good
agreement between the theoretical predicted PDF �solid
curve� and the simulation results �pluses�, without fitting.

In Figure 5 we consider the occupation time of the regions
near the double-well potential minima, −0.9�x�−0.5 and
0.5�x�0.9. We fix �=0.8 and vary the temperature, using
Eqs. �7� and �8�. At temperature T�0.4 �solid line� we
see that the PDF of p̄X is symmetric. This happens when
PX

B=1/2, namely, for a case that there is probability one-half
of occupying the observation region, and probability one-

FIG. 2. �Color online� The PDF of occupation times p̄X= tX / t
where tX is the total time spent on a finite domain, and t is the
measurement time. Here we used �=0.5. The domains we consid-
ered are x
0.6, x
0, and x
−0.6, corresponding to �a�, �b�, and
�c� in the figure. For an ergodic process satisfying detailed balance,
the PDF f�p̄X� would be a � function centered around the value
predicted by Boltzmann which is given by the arrows. In a given
numerical experiment, it is unlikely to obtain the value of p̄X pre-
dicted by Boltzmann, though Boltzmann statistics does yield the
average of p̄X over many particles. To construct histograms we used
106 trajectories, measurement time t=108, and temperature T=0.3.
The solid curves correspond to the analytical formula Eqs. �7� and
�8� used without any fitting parameters, and the pluses show the
simulation results.

FIG. 3. �Color online� Same as Fig. 2 but now �=0.7. In this
case the probability of obtaining the ergodic value �arrow� in a
single measurement is higher than for the case �=0.5 �see Fig. 2�.
Note that the larger the region we observe the more the PDF is tilted
toward 1 since it is more probable that the particle is within the
region of observation.

FIG. 4. �Color online� The PDF of the fraction of occupation
time in the disconnected regions x�−0.6 and x
0.6, for �=0.75
and temperature T=0.3. The theoretical line �solid curve� is deter-
mined by summing the equilibrium probabilities of occupying all
the cells within the regions, and substituting it into the constant RX.
The good agreement between the theory and the numerical simula-
tion �pluses� illustrates that our theory is not limited to connected
regions.
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half to be out of this interval. When the temperature is very
low, we expect to find the particle in the ground state,
namely, near the minima. Hence the PDF of p̄X is tilted to-
ward p̄X�1 when temperature is lowered �see Fig. 5 when
T=0.1�. In contrast, when the temperature is high, we expect
the probability of occupying the observation region to be
reduced �as usual entropy wins at high temperature�. And
indeed we observe that when T=5 the PDF of p̄X is more
tilted toward the left, namely, to p̄X�0.

B. Validity of main Eqs. (7) and (8)

Our numerical work as well as our analytical solutions for
the biased and nonbiased CTRWs show the validity of Eqs.
�7� and �8�. What happens for more general types of potential
fields? Can we claim that Eq. �7� has a wider applicability?
Consider the CTRW with potential profile 
. . . ,Ex , . . . �, with
the dynamics satisfying the detailed balance condition �i.e.,
the mentioned continuum limit condition holds�. We claim
that if for ���� with finite moments, the system is ergodic,
then for the same energy profile but when the waiting time
PDF has a long tail, Eqs. �7� and �8� hold. Our reasoning is
that we can think of � as a control parameter, which we can
vary between 0��
1. And since for the case �=1 we have
Rx= Px

B / �1− Px
B� also for 0���1 this relation must hold

�since PB does not depend on ��. Further, the transformation
in Laplace space u���→Au� in the small u limit of the wait-
ing time PDF, seems to indicate that the behavior we found
has a general validity.

A way to understand the ergodicity breaking laws Eqs. �7�
and �8� is to consider the number of times nx the particle

visits lattice point x during a long measurement time. In that
case the particle visits x many times, and we assume that the
fraction of number of visits satisfies

nx

n
= exp�−

V�x�
T

� , �58�

where n is the total number of jumps made by the particle.
If the first moment of the waiting time distribution is finite,
we have tx / t=nx /n, since the average time spent on x is nx
times the mean waiting time. When the average waiting
time is infinite, ��1, one can show that the PDF of tx / t is
given by Eq. �7� if condition Eq. �58� holds. Equation �58�
should be tested in more detail, for example using numerical
simulations.

VII. SUMMARY AND DISCUSSION

We obtained the nonergodic properties of biased and un-
biased continuous time random walks. In particular the dis-
tribution of the occupation fraction p̄x was found. Our results
are valid for both thermal and nonthermal cases. In both
cases the nonergodicity is described using the ���Rx , p̄x�
PDF Eq. �7�, where � is the anomalous diffusion exponent
�x2�� t�. For both thermal and nonthermal random walks the
parameter Rx is related to the ensemble averaged equilib-
rium properties of the system, Eqs. �53� and �54�, respec-
tively. If the system is in the vicinity of thermal equilibrium,
the equilibrium of the system is the Boltzmann-Gibbs equi-
librium, in the ensemble sense. Such behavior is found when
detailed balance conditions are applied properly. In this case
the characterization of the nonergodic properties of the oc-
cupation times is related to the partition function and tem-
perature. The nonergodicity manifests itself when the time
average of single-particle observables is considered; in par-
ticular, the occupation time in a given energy state or on a
particular lattice point. Hence the nonergodicity might reveal
itself in single-particle experiments.

Models and systems describing anomalous diffusion are
widespread. In most cases ensemble average properties of
such processes are investigated, both in theory and in experi-
ment. For single-particle experiments, where the problem of
ensemble averaging is removed, we may either �i� recon-
struct the ensemble averages, by repeating the single-
molecule experiment many times, or �ii� investigate the er-
godic properties of the system, by considering the fraction of
occupation time in a particular state and obtaining its distri-
bution. It is the second type of measurement that is consid-
ered here, which yields insight into single-particle properties
that differ from the standard ensemble measurement, pro-
vided that a nonergodic phase is investigated. While the
theory of anomalous diffusion processes is now vast, the
nonergodic properties of such processes are still not well
understood. Investigation of this topic beyond the CTRW
approach is left for future work.
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APPENDIX A: THE ��„RX , P̄X… FUNCTION

In this appendix we rederive the limit theorem Eq. �7�.
While this goal was accomplished by Lamperti a long time
ago �36�, we believe that it is worth rederiving this result
using a method similar to what is used today in the statistical
physics community. In particular Godreche and Luck �25� in
their analysis of power law renewal processes rederived the
symmetric ���Rx , p̄x� with Rx=1 for a two-state process,
where sojourn times in both states are identically distributed.
Here, we consider the case of interest in this paper, where the
sojourn times in the two states are not statistically identical.
We also derive an exact distribution for the occupation frac-
tion of a two-state process in Laplace space Eqs. �A12� and
�A13�.

Consider a system evolving between two states � and �
corresponding to states x and nx, respectively. Let ��t�=1
when the system is in state �; otherwise ��t�=0 and the
system is in state �. A schematic diagram of ��t� is shown in
Fig. 6. Let 
ti� denote dots on the time axis at which transi-
tion events between state � to state � or vice versa occur.
Let 
�i� be sojourn times in either state � or state �. If the
process starts with state �, then �i is a � state if i is odd. We
also denote the total number of jumps in the measurement
time interval �0, t� as n. We assume that the sojourn times are
independent identically distributed random variables. The
PDF of sojourn times is �+��� and �−��� for states � and �,
respectively. Such a simple process is called a two-state re-
newal process. As usual it is convenient to analyze such a
stochastic process using the Laplace transforms

�̂±�s� = 

0

�

e−s��±���d� . �A1�

While we will consider general properties of the stochas-
tic process, we will eventually focus on two main cases. First

consider the case where all moments of �±��� are finite, e.g.,
exponential PDFs belong to this category. Then the follow-
ing small s expansion holds:

�̂±�s� � 1 − s��±� + ¯ . �A2�

Here ��±� are the mean sojourn times in states �. A second
generic case is

�̂±�s� � 1 − s�A± + ¯ �A3�

with 0���1. For example the one-sided Lévy PDF

�̂±�s�=exp�−A±s�� belongs to this class. In the time domain
these PDFs behave like

�±�t� �
A±

���− ���t1+� �A4�

when t is large; namely, for this family of PDFs the average
waiting times in both states diverge.

Let t+ be the total time spent in state �, within the time
period �0, t�. Then the occupation fraction in � is

p̄+ =
t+

t
=



0

t

��t��dt�

t
. �A5�

We now consider statistical properties of t+ focusing on the
scaling limit t→�. Let f t,n

+ �t+� be the PDF of t+ where n
renewal �i.e., jump� events occurred in the time interval
�0, t�, and the start of the process is in state �.

Consider the case of n odd, n=2k+1 with k=0,1 , . . . .
Then since we start with state �, t+=	i=1,odd

n �i where the
summation is only over odd i’s. Also we have tn� t� tn+1,
where tn+1 is the occurrence time of a renewal event which
occurs after the end of the measurement �see Fig. 6�. Hence

f t,n
+ �t+� =���t+ − 	

i=1,odd

n

�i�I�tn 
 t 
 tn+1�� , �A6�

where ��x� is the Dirac delta function, and

I�tn 
 t 
 tn+1� = �1 If condition in parentheses is true,

0 otherwise.

�A7�

In Eq. �A6� �¯� denotes an average over the stochastic pro-
cess, soon to be specified in more detail. Later we will con-
sider the case n even, and then sum over n to obtain the PDF
of t+.

Let s be the Laplace pair of t, and u of t+. It is convenient

to consider the double Laplace transform f̂ n,s
+ �u� of fn,t

+ �t+�:
FIG. 6. �Color online� A schematic diagram of the two-state

process.
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f̂ n,s
+ �u� = 


0

�

e−t+u

0

�

e−stfn,t
+ �t+�dt+dt

=�

0

� 

0

�

e−ut+−st��t+ − 	
i=1,odd

n

�i�
�I�tn 
 t 
 tn+1�dt+dt�

=� e−stn − e−stn+1

s
exp�− u 	

i=1,odd

n

�i�� , �A8�

where we made use of Eq. �A6�. Now we may consider the
average �¯�, using tn=	i=1,odd

n �i+	i=2,even
n−1 �i and similarly for

tn+1. Recalling that �i with odd �even� i are � ��� states,
respectively, we find after averaging over the 
�i�’s

f̂ n,s
+ �u� = �̂+

k+1�s + u��̂−
k�s�

1 − �̂−�s�
s

�A9�

where n=2k+1. For even n such that n=2k, k=1,2 , . . ., we
obtain

f̂ n,s
+ �u� = �̂+

k�s + u��̂−
k�s�

1 − �̂+�s + u�
s + u

. �A10�

Note that for even n the last � interval falls on t, hence we
must investigate the statistical properties of �*= t− tn, the
time difference between the end of the measurement and the
last jump in the sequence �see Fig. 6�. We are ready to obtain
the double Laplace transform of f t

+�t+�, i.e., the PDF of t+

when the process starts in the � state,

f̂ s
+�u� = 	

k=0

�

� f̂2k,s
+ �u� + f̂2k+1,s

+ �u�� . �A11�

Using Eqs. �A9�–�A11� we obtain the exact solution to the
problem in Laplace s, u space:

f̂ s
+�u� = �1 − �̂+�s + u�

s + u
+ �̂+�s + u�

1 − �̂−�s�
s

�
�

1

1 − �̂+�s + u��̂−�s�
. �A12�

It is easy to check the normalization condition
fs

+�u=0�=1/s provided of course that �±��� are normalized
PDFs. In a similar way one can show that if we start the
process in state � the double Laplace transform of the PDF
of t+ denoted with f t

−�t+� is

f̂ s
−�u� = ��̂−�s�

1 − �̂+�s + u�
s + u

+
1 − �̂−�s�

s
� 1

1 − �̂+�s + u��̂−�s�
.

�A13�

Equations �A12� and �A13� yield in principle the exact ex-
pression for the occupation fraction, which might be useful
in determining the preasymptotic behavior, for example, us-
ing numerical inverse Laplace transform.

For the generic case Eq. �A3�, in the limit of s→0 and
u→0, their ratio remaining arbitrary, Eqs. �A12� and �A13�
yield

f̂ s
±�u� �

R�s + u��−1 + s�−1

R�s + u�� + s� �A14�

with

R =
A+

A−
. �A15�

The amplitude ratio R determines the degree of symmetry in
the problem. Note that in this scaling limit the initial state of
the process, i.e., the process being in state � or � at the
initial time, is not important.

The small �s ,u� limit considered in Eq. �A14� corresponds
to large measurement time t and the occupation time t+ limit.
We invert Eq. �A4� using a method given in Ref. �25�. The
method states that if in the limit s ,u→0 a double Laplace
transform behaves like

f̂ s�u� =
1

s
g� s

u
� �A16�

then the PDF of the scaled variable p̄+= t+ / t is in the long
time t limit

f�p̄+� = −
1

�x
lim
�→0

Im��g�−
1

x + i�
��

x=p̄+

� . �A17�

Using Eq. �A14� we find the PDF of the fraction of occupa-
tion time p̄+= t+ / t,

f�p̄+� = ���R, p̄+�

=
sin ��

�

Rp̄+
�−1�1 − p̄+��−1

R2�1 − p̄+�2� + p̄+
2� + 2R�1 − p̄+��p̄+

� cos ��
.

�A18�

The PDF is normalized according to �0
1f�p̄+�dp̄+=1, it is

valid only in the long time t limit, and is independent of it. In
this sense an equilibrium is obtained. In particular when
A+=A− and �=1/2 we find the arcsine distribution. It is easy
to show that the average is

�p̄+� =
�t+�

t
=

A+

A+ + A−
. �A19�

In the limit �→1 we obtain
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f�p̄+� = ��p̄+ −
���+

���+ + ���−
� , �A20�

where ���± are the average waiting times when the waiting
time PDFs have finite moments. We identify this behavior
with an ergodic behavior, since according to Eq. �A5� p̄+ is a
time average of ��t�, which is equal to the ensemble average
value when moments of �±��� are finite.

APPENDIX B: FIRST PASSAGE TIME

1. First passage time for unbiased CTRW

For the unbiased random walk we have QL�x�=QR�x�
=1/2, for x�0, x� L̃. And as mentioned x=0 is the absorb-

ing boundary condition, while L̃ is a reflecting wall. Using
Eq. �23� the z transform of Eq. �25� is

P̃0�z� =
z

2
P̃1�z� + zP̃0�z�

using the initial conditions P1�0�=1,

P̃1�z� − 1 =
z

2
P̃2�z� ,

for x=2, . . . ,L−2,

P̃x�z� =
z

2
�P̃x−1�z� + P̃x+1�z�� ,

P̃L̃−1�z� = zP̃L̃�z� +
z

2
P̃L̃−2�z� ,

P̃L̃�z� =
z

2
P̃L̃−1�z� , �B1�

and using Eq. �26�

F̃dis�z� =
z

2
P̃1�z� . �B2�

To solve these equations we use a recursive solution method
�38,39�. We define �x�z� using the relation

P̃x�z� = �x�z�P̃x−1�z� , �B3�

and it is easy to show using Eqs. �B1� and �B3� that

�L̃�z� = z/2 �L̃−1�z� = �z/2�/�1 − z2/2� . �B4�

The function �x�z� also satisfies the recursion relation

�x−1�z� =
�z/2�

1 − z�x�z�/2
�B5�

which is easy to obtain from Eq. �B1�. Let

�x�z� =
gx�z�
hx�z�

�B6�

and using Eq. �A5�

�gx−1�z�
hx−1�z�

� =� 0
z

2

−
z

2
1 ��gx�z�

hx�z�
� . �B7�

Since we are interested only in the ratio gx�z� /hx�z� we may
set hL̃�z�=1 and gL̃�z�=z /2 using Eq. �B4�. Equation �B4�
gives the seeds for the iteration rule Eq. �B7�: hL̃−1�z�=1
−z2 /2 and gL̃−1�z�=z /2, which yield hL̃−2�z� ,gL̃−2�z�, etc. Let

hx�z� = B+��+�L̃−x + B−��−�L̃−x, �B8�

then from hL̃�z�=1 we have B++B−=1. �± are eigenvalues of
the matrix in Eq. �B7�:

�± =
1 ± �1 − z2

2
. �B9�

Using hL̃−1�z�=1−z2 /2 it is easy to obtain Eq. �38�. The
relations

P̃1�z� =
1

1 − z�2�z�/2
, �B10�

�2�z�=zh3�z� /2h2�z�, and Eqs. �B2� and �B8� lead to Eq.
�36�.

2. First passage time for biased CTRW

For the uniformly biased CTRW the probability to jump
left is QL�x�=q and hence the probability to jump to the right

is QR�x�=1−q, for x�0, x� L̃. The two boundary conditions

are that x=0 is absorbing, while L̃ is a reflecting wall. In this
case the z transform of the master equation �25� is

P̃0�z� = zqP̃1�z� + zP̃0�z� ,

P̃1�z� − 1 = zqP̃2�z� ,

P̃x�z� = z�1 − q�P̃x−1�z� + zqP̃x+1�z� ,

P̃L̃−1�z� = zP̃L̃�z� + z�1 − q�P̃L̃−2�z� ,

P̃L̃�z� = z�1 − q�P̃L̃−1�z� , �B11�

and using Eq. �26�

F̃dis�z� = zqP̃1�z� . �B12�

The solution of the biased master equation �B11� follows the
same procedure as for the unbiased and yields Eqs.

�40�–�42�. Using Eq. �B12� one can show that F̃dis�z=1�=1,

for any finite L̃ and q�0, namely, if we wait long enough the
particle always reaches the sticky boundary at x=0.
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